Imaging G-protein coupled receptor (GPCR)-mediated signaling events that control chemotaxis of Dictyostelium discoideum.
نویسندگان
چکیده
Many eukaryotic cells can detect gradients of chemical signals in their environments and migrate accordingly (1). This guided cell migration is referred as chemotaxis, which is essential for various cells to carry out their functions such as trafficking of immune cells and patterning of neuronal cells (2, 3). A large family of G-protein coupled receptors (GPCRs) detects variable small peptides, known as chemokines, to direct cell migration in vivo (4). The final goal of chemotaxis research is to understand how a GPCR machinery senses chemokine gradients and controls signaling events leading to chemotaxis. To this end, we use imaging techniques to monitor, in real time, spatiotemporal concentrations of chemoattractants, cell movement in a gradient of chemoattractant, GPCR mediated activation of heterotrimeric G-protein, and intracellular signaling events involved in chemotaxis of eukaryotic cells (5-8). The simple eukaryotic organism, Dictyostelium discoideum, displays chemotaxic behaviors that are similar to those of leukocytes, and D. discoideum is a key model system for studying eukaryotic chemotaxis. As free-living amoebae, D. discoideum cells divide in rich medium. Upon starvation, cells enter a developmental program in which they aggregate through cAMP-mediated chemotaxis to form multicullular structures. Many components involved in chemotaxis to cAMP have been identified in D. discoideum. The binding of cAMP to a GPCR (cAR1) induces dissociation of heterotrimeric G-proteins into Gγ and Gβγ subunits (7, 9, 10). Gβγ subunits activate Ras, which in turn activates PI3K, converting PIP(2;) into PIP(3;) on the cell membrane (11-13). PIP(3;) serve as binding sites for proteins with pleckstrin Homology (PH) domains, thus recruiting these proteins to the membrane (14, 15). Activation of cAR1 receptors also controls the membrane associations of PTEN, which dephosphorylates PIP(3;) to PIP(2;)(16, 17). The molecular mechanisms are evolutionarily conserved in chemokine GPCR-mediated chemotaxis of human cells such as neutrophils (18). We present following methods for studying chemotaxis of D. discoideum cells. 1. Preparation of chemotactic component cells. 2. Imaging chemotaxis of cells in a cAMP gradient. 3. Monitoring a GPCR induced activation of heterotrimeric G-protein in single live cells. 4. Imaging chemoattractant-triggered dynamic PIP(3;) responses in single live cells in real time. Our developed imaging methods can be applied to study chemotaxis of human leukocytes.
منابع مشابه
A shortcut from GPCR signaling to Rac-mediated actin cytoskeleton through an ELMO/DOCK complex
Chemotaxis, chemoattractant-guided directional cell migration, plays major roles in human innate immunity and in development of a model organism Dictyostelium discoideum. Human leukocytes and D. disscoideum share remarkable similarities in the molecular mechanisms that control chemotaxis. These cells use G-Protein-Coupled Receptors (GPCRs), such as chemokine receptors, to control a signaling ne...
متن کاملSignaling network from GPCR to the actin cytoskeleton during chemotaxis
Chemotaxis is crucial for many physiological processes including the recruitment of leukocytes to sites of infection, trafficking of lymphocytes in the human body, and metastasis of cancer cells. A family of small proteins, chemokines, serves as the signals, and a family of G-protein coupled receptors (GPCRs) detects chemokines and direct cell migration. One of the basic questions in chemotaxis...
متن کاملGenetic analysis of the role of G protein–coupled receptor signaling in electrotaxis
Cells display chemotaxis and electrotaxis by migrating directionally in gradients of specific chemicals or electrical potential. Chemotaxis in Dictyostelium discoideum is mediated by G protein-coupled receptors. The unique Gbeta is essential for all chemotactic responses, although different chemoattractants use different receptors and Galpha subunits. Dictyostelium amoebae show striking electro...
متن کاملPhosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay
Migratory cells, including mammalian leukocytes and Dictyostelium, use G-protein-coupled receptor (GPCR) signaling to regulate MAPK/ERK, PI3K, TORC2/AKT, adenylyl cyclase and actin polymerization, which collectively direct chemotaxis. Upon ligand binding, mammalian GPCRs are phosphorylated at cytoplasmic residues, uncoupling G-protein pathways, but activating other pathways. However, connection...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 55 شماره
صفحات -
تاریخ انتشار 2011